A. TANIM
A ¹ Æ ve B ¹ Æ olmak üzere, A dan B ye bir b bağıntısı verilmiş olsun.
A nın her elemanı B nin elemanlarıyla en az bir kez ve en çok bir kez eşleniyorsa bu bağıntıya fonksiyon denir.
"x Î A ve y Î B olmak üzere, A dan B ye bir f fonksiyonu
f : A ® B ya da x ® f(x) = y biçiminde gösterilir. A ya fonksiyonun tanım kümesi, B ye de değer kümesi denir.
Yukarıda A dan B ye tanımlanan f fonksiyonu
f = {(a, 1), (b, 2), (c, 3), (d, 2)}
biçiminde de gösterilir.
Ü
|
Her fonksiyon bir bağıntıdır. Fakat her bağıntı fonksiyon olmayabilir.
|
Ü
|
Görüntü kümesi değer kümesinin alt kümesidir.
|
Ü
|
s(A) = m ve s(B) = n olmak üzere,
i) A dan B ye nm tane fonksiyon tanımlanabilir.
ii) B den A ya mn tane fonksiyon tanımlanabilir.
iii) A dan B ye tanımlanabilen fonksiyon olmayan bağıntıların sayısı 2m × n � nm dir.
|
Ü
|
Grafiği verilen bir bağıntının fonksiyon olup olmadığını anlamak için, y eksenine paralel doğrular çizilir. Bu doğrular fonksiyonun belirttiği eğride en az bir ve en çok bir noktayı kesiyorsa verilen bağıntı x ten y ye bir fonksiyondur.
|
B. FONKSİYONLARDA İŞLEMLER
A Ç B ¹ Æ olmak üzere,
fonksiyonları tanımlansın.
-
(f + g) : A Ç B ® , (f + g)(x) = f(x) + g(x)
-
(f � g) : A Ç B ® , (f � g)(x) = f(x) � g(x)
-
(f × g) : A Ç B ® , (f × g)(x) = f(x) × g(x)
-
"x Î A Ç B için, g(x) ¹ 0 olmak üzere,
-
c Î olmak üzere,
(c × f) : A ® , (c × f)(x) = c × f(x) tir.
C. FONKSİYON ÇEŞİTLERİ
1. Bire Bir Fonksiyon
Bir fonksiyonda farklı elemanların görüntüleri de farklıysa fonksiyon bire birdir..
BBuna göre, bire bir fonksiyonda,
"x1, x2 Î A için, x1 ¹ x2 iken f(x1) ¹ f(x2) olur.
Diğer bir ifadeyle,
"x1, x2 Î A için, f(x1) = f(x2) iken
x1 = x2 ise, f fonksiyonu bire birdir.
Ü
|
s(A) = m ve s(B) = n (n ³ m) olmak üzere,
A dan B ye tanımlanabilecek bire bir fonksiyonların sayısı,
|
2. Örten Fonksiyon
Görüntü kümesi değer kümesine eşit olan fonksiyonlara örten fonksiyon denir.
Ü
|
f : A ® B
f(A) = B ise, f örtendir.
|
Ü |
s(A) = m olmak üzere, A dan A ya tanımlanabilen bire bir örten fonksiyonların sayısı,
m! = m × (m � 1) × (m � 2) × ... × 3 × 2 × 1 dir.
|
3. İçine Fonksiyon
Örten olmayan fonksiyona içine fonksiyon denir.
Ü
|
İçine fonksiyonun değer kümesinde eşlenmemiş eleman vardır.
|
Ü
|
s(A) = m olmak üzere, A dan A ya tanımlanabilen içine fonksiyonların sayısı mm � m! dir.
|
4. Birim (Etkisiz) Fonksiyon
Her elemanı kendisine eşleyen fonksiyona birim fonksiyon denir.
ise, f birim (etkisiz) fonksiyondur.
Ü
|
Birim fonksiyon genellikle I ile gösterilir.
|
5. Sabit Fonksiyon
Tanım kümesindeki bütün elemanları değer küme-sindeki bir elemana eşleyen fonksiyona sabit fonksiyon denir.
Ü
|
"x Î A ve c Î B için,
f : A ® B
f(x) = c
ise, f sabit fonksiyondur.
|
Ü
|
s(A) = m, s(B) = n olmak üzere,
A dan B ye n tane sabit fonksiyon tanımlanabilir.
|
6. Çift ve Tek Fonksiyon
f(�x) = f(x) ise, f fonksiyonu çift fonksiyondur.
f(�x) = �f(x) ise, f fonksiyonu tek fonksiyondur.
Ü
|
Çift fonksiyonların grafikleri Oy eksenine göre simetriktir.
|
Ü |
Tek fonksiyonların grafikleri orijine göre simetriktir. |
D. EŞİT FONKSİYON
f : A ® B
g : A ® B
Her x Î A için f(x) = g(x) ise, f fonksiyonu g fonksiyonuna eşittir.
E. PERMÜTASYON FONKSİYON
f : A ® A
olmak üzere, f fonksiyonu bire bir ve örten ise, f fonksiyonuna permütasyon fonksiyon denir.
A = {a, b, c} olmak üzere, f : A ® A
f = {(a, b), (b, c), (c, a)}
fonksiyonu permütasyon fonksiyon olup
biçiminde gösterilir.
F. TERS FONKSİYON
f : A ® B, f = {(x, y)|x Î A, y Î B} bire bir ve örten fonksiyon olmak üzere,
f�1 : B ® A, f�1 = {(y, x)|(x, y) Î f} fonksiyonuna f nin ters fonksiyonu denir.
|
(x, y) Î f ise, (y, x) Î f�1 olduğu için,
y = f(x) ise, x = f�1(y) dir.
Ayrıca, (f�1)�1 = f dir.
|
(f�1)�1 = f dir. Ancak, (f�1(x))�1 ¹ f(x) tir.
|
f fonksiyonu bire bir ve örten değilse, f�1 fonksiyon değildir.
|
f : A ® B ise, f�1 : B ® A olduğu için, f nin tanım kümesi, f�1 in değer kümesidir. f nin değer kümesi de, f�1 in tanım kümesidir.
|
f(a) = b ise, f�1(b) = a dır.
f�1(b) = a ise, f(a) = b dir.
|
Ü
|
y = f(x) fonksiyonunun grafiği ile y = f�1(x) in grafiği
y = x doğrusuna göre birbirinin simetriğidir.
|
Ü |
olmak üzere,
|
Ü |
olmak üzere,
|
G. BİLEŞKE FONKSİYON
f : A ® B, g : B ® C fonksiyonları tanımlansın.
f ve g yi kullanarak A kümesinin elemanlarını C kümesinin elemanlarına eşleyen fonksiyona g ile f nin bileşke fonksiyonu denir.
Buna göre,
f : A ® B ve g : B ® C olmak üzere, gof : A ® C fonksiyonuna f ile g nin bileşke fonksiyonu denir ve g bileşke f diye okunur.
Ü
|
(gof)(x) = g[f(x)] tir.
|
Bileşke işleminin değişme özeliği yoktur.
Bu durumda, fog ¹ gof dir.
Bazı fonksiyonlar için fog = gof olabilir. Ancak bu �fonksiyonlarda değişme özeliği yoktur.� gerçeğini değiştirmez.
|
Ü
|
Fonksiyonlarda bileşke işleminin birleşme özeliği vardır.
Bu durumda (fog)oh = fo(goh) = fogoh olur.
|
Ü
|
I birim fonksiyon olmak üzere,
foI = Iof = f ve
f�1of = fof�1 = I dır.
|
Ü
|
f, g ve h fonksiyonları bire bir ve örten olmak üzere,
(fog)�1 = g�1of�1 ve
(fogoh)�1 = h�1og�1of�1 dir.
|
Ü
|
(fog)(x) = h(x)
ise, f(x) = (hog�1)(x) dir.
ise, g(x) = (f�1oh)(x) tir.
|
� f�1 (x) = f(x) tir.
� (fof) (x) = x
� (fofof) (x) = f(x)
� (fofofof) (x) = x
...
|
H. FONKSİYONUN GRAFİĞİ
Bir fonksiyonun elemanlarına analitik düzlemde karşılık gelen noktaların kümesine bu fonksiyonun grafiği denir.
f : A ® B, f = {(x, y)|x Î A, y Î B, y = f(x)}
|
(a, b) Î f
olduğundan
f(a) = b dir.
Ayrıca, f�1(b) = a dır.
|
Ü
|
Yukarıdaki y = f(x) fonksiyonunun grafiğine göre,
f(�3) = 3, f(�2) = 1, f(�1) = 2, f(0) = 2, f(1) = 1,
f(2) = 0, f(3) = 2, f(4) = 1, f(5) = 0 dır.
|
|